Publications by authors named "İlker Oguz"

Current trends in artificial intelligence toward larger models demand a rethinking of both hardware and algorithms. Photonics-based systems offer high-speed, energy-efficient computing units, provided algorithms are designed to exploit photonics' unique strengths. The recent implementation of cellular automata in photonics demonstrates how a few local interactions can achieve high throughput and precision.

View Article and Find Full Text PDF

Deep neural networks have achieved remarkable breakthroughs by leveraging multiple layers of data processing to extract hidden representations, albeit at the cost of large electronic computing power. To enhance energy efficiency and speed, the optical implementation of neural networks aims to harness the advantages of optical bandwidth and the energy efficiency of optical interconnections. In the absence of low-power optical nonlinearities, the challenge in the implementation of multilayer optical networks lies in realizing multiple optical layers without resorting to electronic components.

View Article and Find Full Text PDF

Neural networks (NNs) have demonstrated remarkable capabilities in various tasks, but their computation-intensive nature demands faster and more energy-efficient hardware implementations. Optics-based platforms, using technologies such as silicon photonics and spatial light modulators, offer promising avenues for achieving this goal. However, training multiple programmable layers together with these physical systems poses challenges, as they are difficult to fully characterize and describe with differentiable functions, hindering the use of error backpropagation algorithm.

View Article and Find Full Text PDF

Multimode fibers (MMF) were initially developed to transmit digital information encoded in the time domain. There were few attempts in the late 60s and 70s to transmit analog images through MMF. With the availability of digital spatial modulators, practical image transfer through MMFs has the potential to revolutionize medical endoscopy.

View Article and Find Full Text PDF

Today's heavy machine learning tasks are fueled by large datasets. Computing is performed with power-hungry processors whose performance is ultimately limited by the data transfer to and from memory. Optics is a powerful means of communicating and processing information, and there is currently intense interest in optical information processing for realizing high-speed computations.

View Article and Find Full Text PDF
Article Synopsis
  • Parasitic infections are a significant global health challenge, and current screening methods are often insufficient for early diagnosis due to limited speed and sensitivity.
  • A new motility-based, label-free imaging platform has been developed to quickly detect motile parasites in bodily fluids by analyzing their movement, allowing for the rapid screening of fluid samples in three dimensions.
  • This innovative system has shown improved detection capabilities for trypanosomes and other motile parasites, significantly outperforming existing methods and offering a portable, cost-effective solution that could enhance diagnosis in areas with limited resources.
View Article and Find Full Text PDF