Oxygen support plays a critical role in the management of preterm infants in neonatal intensive care units. On the other hand, the possible effects of oxygen supplementation on cellular functions, specifically glucose metabolism, have been less understood. PURPOSE: of the study is to investigate whether supplemental oxygen alters glucose metabolism and pentose phosphate pathway (PPP) activity in the brain tissue and its relevance with silent information regulator proteins (SIRT) pathway.
View Article and Find Full Text PDFDespite current advancements in neonatal care, hyperbilirubinemia resulting in bilirubin-induced neurological dysfunction (BIND) continues to be one of the major reasons of mortality or lifelong disability. Although the exact mechanisms underlying brain injury upon bilirubin exposure remains unelucidated, inflammation is considered to be one of the major contributors to BIND. This study investigates the role of the NLRP3 inflammasome in bilirubin-induced injury using in vitro and in vivo models.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
October 2022
The development of the CNS is a complex and well-regulated process, where stem cells differentiate into committed cells depending on the stimuli from the microenvironment. Alterations of oxygen levels were stated to be significant in terms of brain development and neurogenesis during embryonic development, as well as the adult neurogenesis. As a product of oxygen processing, hydrogen peroxide (HO) has been established as a key regulator, acting as a secondary messenger, of signal transduction and cellular biological functions.
View Article and Find Full Text PDFThe NLRP3 inflammasome is a multiprotein complex that activates caspase-1 and triggers the release of the proinflammatory cytokines IL-1β and IL-18 in response to diverse signals. Although inflammasome activation plays critical roles against various pathogens in host defense, overactivation of inflammasome contributes to the pathogenesis of inflammatory diseases, including acute CNS injuries and chronic neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. In the current study, we demonstrated that Sulforaphane (SFN), a dietary natural product, inhibits NLRP3 inflammasome mediated IL-1β and IL-18 secretion and pyroptosis in murine microglial cells.
View Article and Find Full Text PDFDespite widely known detrimental effects on the developing brain, supplemental oxygen is still irreplaceable in the management of newborn infants with respiratory distress. Identifying downstream mechanisms underlying oxygen toxicity is a key step for development of new neuroprotective strategies. Main purpose of this study is to investigate whether NLRP3 inflammasome activation has a role in the pathogenesis of hyperoxia-induced preterm brain injury.
View Article and Find Full Text PDFBackground: The NLRP3 inflammasome formation and following cytokine secretion is a crucial step in innate immune responses. Internal and external factors may trigger inflammasome activation and result in inflammatory cytokine secretion. Inflammasome formation and activity play critical roles in several disease pathologies such as cardiovascular, metabolic, renal, digestive, and CNS diseases.
View Article and Find Full Text PDFThere are only a few antifungal drugs used systemically in treatment, and invasive fungal infections that are resistant to these drugs are an emerging problem in health care. In this study, we performed a high-copy-number genomic DNA (gDNA) library screening to find and characterize genes that reduce susceptibility to amphotericin B, caspofungin, and voriconazole in We identified the and genes for amphotericin B, and genes for caspofungin, and the and genes for voriconazole. The deletion mutants for and were drug susceptible, but the other mutants had no apparent susceptibility.
View Article and Find Full Text PDFAdv Protein Chem Struct Biol
August 2019
During the past 35 years, recombinant DNA technology has allowed the production of a wide range of hematopoietic and neurotrophic growth factors including erythropoietin (EPO). These have emerged as promising protein drugs in various human diseases. Accumulated evidences have recently demonstrated the neuroprotective effect of EPO in preclinical models of acute and chronic degenerative disorders.
View Article and Find Full Text PDF